Respondent-driven sampling as Markov chain Monte Carlo.

نویسندگان

  • Sharad Goel
  • Matthew J Salganik
چکیده

Respondent-driven sampling (RDS) is a recently introduced, and now widely used, technique for estimating disease prevalence in hidden populations. RDS data are collected through a snowball mechanism, in which current sample members recruit future sample members. In this paper we present RDS as Markov chain Monte Carlo importance sampling, and we examine the effects of community structure and the recruitment procedure on the variance of RDS estimates. Past work has assumed that the variance of RDS estimates is primarily affected by segregation between healthy and infected individuals. We examine an illustrative model to show that this is not necessarily the case, and that bottlenecks anywhere in the networks can substantially affect estimates. We also show that variance is inflated by a common design feature in which the sample members are encouraged to recruit multiple future sample members. The paper concludes with suggestions for implementing and evaluating RDS studies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Respondent-Driven Sampling in Online Social Networks

Abstract. Respondent-driven sampling (RDS) is a commonly used method for acquiring data on hidden communities, i.e., those that lack unbiased sampling frames or face social stigmas that make their members unwilling to identify themselves. Obtaining accurate statistical data about such communities is important because, for instance, they often have different health burdens from the greater popul...

متن کامل

The use of sampling techniques in dynamic data driven simulations ∗

In this paper we discuss some numerical procedures involved in dynamic data driven simulations (DDDAS). The main objective of this paper is the recovery of the initial data as well as the media properties based on dynamic data. We consider the contaminant transport in porous media with a number of sensors placed at some locations. Based on measured data we propose to recover the permeability fi...

متن کامل

Fractional Langevin Monte Carlo: Exploring Levy Driven Stochastic Differential Equations for Markov Chain Monte Carlo

Along with the recent advances in scalable Markov Chain Monte Carlo methods, sampling techniques that are based on Langevin diffusions have started receiving increasing attention. These so called Langevin Monte Carlo (LMC) methods are based on diffusions driven by a Brownian motion, which gives rise to Gaussian proposal distributions in the resulting algorithms. Even though these approaches hav...

متن کامل

A Stochastic algorithm to solve multiple dimensional Fredholm integral equations of the second kind

In the present work‎, ‎a new stochastic algorithm is proposed to solve multiple dimensional Fredholm integral equations of the second kind‎. ‎The solution of the‎ integral equation is described by the Neumann series expansion‎. ‎Each term of this expansion can be considered as an expectation which is approximated by a continuous Markov chain Monte Carlo method‎. ‎An algorithm is proposed to sim...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Statistics in medicine

دوره 28 17  شماره 

صفحات  -

تاریخ انتشار 2009